
Linear Algebra Working Group :: Day 2

Note: All vector spaces will be finite-dimensional vector spaces over the field R.

1 Diagonalization

Definition 1.1. An n×n matrix A is similar to an n×n matrix B if there exists an invertible
n × n matrix P such that A = PBP−1. More generally, let V be a finite-dimensional vector
space. Linear transformations A,B : V → V are similar if there exists an invertible P : V → V
such that A = P ◦B ◦ P−1.

Exercise 1. Show that if two matrices are similar then they have the same eigenvalues. (Hint:
Consider the matrix giving the characteristic polynomial.) This of course also applies to linear
transformations too. Give a counterexample to show the converse is not true.

Definition 1.2. An n×n matrix A is diagonalizable if it is similar to a diagonal matrix. More
generally, a linear transformation T : V → V is diagonalizable if its matrix representation with
respect to some basis on V is diagonalizable.

Theorem 1.3. Let A be an n × n matrix. The matrix A is diagonalizable if and only if it has
n linearly independent eigenvectors.

Exercise 2. Prove Theorem Thm 1.3. (Hint: Look for a diagonalization A = PDP−1 where D
has the eigenvalues on the diagonal and P has the respective eigenvectors as columns.)

Exercise 3. Diagonalize the following matrices if possible: 1 3 3
−3 −5 −3
3 3 1

  2 4 3
−4 −6 −3
3 3 1


Exercise 4. Show that a diagonalization is not unique.

Definition 1.4. Let A be an n×n matrix and λ an eigenvalue of A. The algebraic multiplicity
of λ is the multiplicity of λ as a root of the characteristic polynomial det(A−λI). The geometric
multiplicity of λ is the dimension of the eigenspace Eλ of the eigenvalue λ.

Exercise 5. Suppose A is a matrix given in block form by:

A =

(
B C
0 D

)
where B and D are squares matrices. Give the eigenvalues of A, with their corresponding
algebraic multiplicities, in terms of those of B and D.

Theorem 1.5. Let A be an n × n matrix and λ1, ..., λp its distinct eigenvalues. Let dk be the
geometric multiplicty of λk, and ak the algebraic multiplicity.

1. For all 1 ≤ k ≤ p, we have dk ≤ ak.

2. The matrix A is diagonalizable if and only if
∑p

k=1 dk = n.

1



3. The matrix A is diagonalizable if and only if the characteristic polynomial factors into
linear factors in R and dk = ak for all 1 ≤ k ≤ p.

4. If A is diagonalizable, the union of the bases of each eigenspace forms a basis for Rn.

Exercise 6. Prove Theorem 1.5

Exercise 7. Determine if the matrix A is diagonalizable:

1. A is 5× 5 and has two distinct eignevalues λ1 and λ2 with geometric multiplcities d1 = 3
and d2 = 2.

2. A is 4 × 4 and has three eigenvalues λ1, λ2, and λ3, where the first two have geometric
multiplicites d1 = 1 and d2 = 2. Can A fail to be diagonalizable?

Exercise 8. Show that if an n × n matrix A has n linearly independent eigenvectors, then so
does AT .

Exercise 9. Show by a 2× 2 nonzero matrix example that a matrix may be invertible, but not
diagonalizable. Show by a nondiagonal 2 × 2 matrix that a matrix may be diagonal but not
invertible.

Definition 1.6. Let A be an n×n matrix. A (real) Schur decomposition is a factorization of
the form A = URUT , where U is an orthogonal n×n matrix and R is an n×n upper triangular
matrix.

Exercise 10. Let A be an n× n matrix.

1. Show that if A admits a real Schur decomposition, then A has n real eigenvalues, counting
algebraic multiplicies.

2. Suppose A has n real eigenvalues λ1, ..., λn, counting algebraic multiplicities. Let u1 be a
unit eigenvector for λ1. Complete this to an orthonormal basis {u1, ..., un} of Rn. Let U
be the matrix with columns the vectors ui. Show that the matrix UTAU has the following
form: 

λ1 ∗ ∗ ∗ ∗
0
... A1

0


where A1 has eigenvalues λ2, ..., λn. (Hint: For the last part, exercise 5 may be useful.)

3. Use part (2) to give an algorithm to obtain a real Schur decomposition when A has n real
eigenvalues, counting algebraic multiplicities.

2 Symmetric Matrices, the Spectral Theorem, and Quadratic

Forms

Definition 2.1. An n× n matrix A is symmetric or self-adjoint if AT = A. More generally,
a linear map A : V → V on a finite-dimensional inner product space (V, 〈·, ·〉) is symmetric or
self-adjoint if AT = A; that is, if the following holds:

〈Av,w〉 = 〈v,Aw〉

for all v, w ∈ V .
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Exercise 11. Suppose A is an n × n self-adjoint matrix. Let x ∈ Cn be a nonzero vector such
that Ax = λx for some λ ∈ C (we still require A to have real entries). Show that λ is real and
the real part of x is an eigenvector of A. (Hint: Consider xTAx).

Definition 2.2. An n × n matrix A is orthogonally diagonalizable if it is diagonalizable
in the form A = PDP−1, where P is an orthogonal matrix. A linear map A : V → V on
a finite-dimensional inner product space is orthogonally diagonalizable if there is a matrix
representing it that is orthogonally diagonalizable.

Exercise 12. Show that if an n×n matrix is orthogonally diagonalizable, then it is self-adjoint.

Exercise 13. Suppose A = PRP−1 with P orthogonal and R upper triangular. Show that if A
is symmetric, then R is diagonal.

Exercise 14. Suppose that A is an n × n matrix that is diagonalizable in the form PDP−1.
Show that any eigenvalue shows up in the diagonal matrix D the same number of times as its
geometric multiplicity.

Definition 2.3. The collection of eigenvalues of a linear map on a finite-dimensional vector
space is oftened called its spectrum.

The following theorem is a classic. Halmos’ discussion about it in [Hal58, Sec. 79] is great, I
really recommend it. (Note he states the theorem a little differently, i.e. in terms of projections.)
Also, the theorem can be rephrased to be about self-adjoint linear maps on finite-dimensional
inner product spaces in the ovious way.

Theorem 2.4. (The Spectral Theorem.) Let A be an n× n symmetric matrix. Then:

1. The spectrum of the matrix A has n real eigenvalues, counting algebraic multiplcities.

2. The eigenspaces of the matrix A are mutually orthogonal.

3. The matrix A is orthogonally diagonalizable.

4. The algebraic and geometric multiplicities of A are the same.

Exercise 15. Let A be an n×n symmetic matrix. Prove Theorem 2.4 using the following hints:

1. For the first statement, exercise 11 may be helpful.

2. Use eigenvectors from different eigenvalues for the second statement.

3. For the third statement, use the first statement. Also exercise 13 and real Schur decompo-
sitions may be useful.

4. Exercise 14 may be helpful for the last statement.

Exercise 16. Suppose A and B are orthogonally diagonalizable matrices that commute. Show
that AB is orthogonally diagonalizable. Take a moment to appreciate why the Spectral Theorem
makes showing this so much easier.
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Definition 2.5. Let A be an n× n symmetric matrix, a spectral decomposition for A is an
expression of the form:

A =
n∑
i=1

λiuiu
T
i

where λ1, ..., λn are the eigenvalues of A and u1, ..., un are orthonormal eigenvectors.

Exercise 17. Let A be an n× n symmetric matrix.

1. Show that the matrix A has a spectral decomposition.

2. Given any unit vector u ∈ Rn, define the matrix B := uuT . Note B is a symmetric matrix.
Show that this is an orthogonal projection onto some subspace. Specify the subspace.

3. Use part 2 to interpret the spectral decomposition of Definition 2.5 in terms of projections.

Exercise 18. Obtain a spectral decomposition of the matrix: 6 −2 −1
−2 6 −1
−1 −1 5


Exercise 19. Let {u1, ..., un} be an orthonormal basis of Rn and let λ1, ..., λn be real scalar.
Define the matrix:

A :=
n∑
i=1

λiuiu
T
i

Show that A is symmetric and that the eigenvalues of A are λ1, ..., λn.

Definition 2.6. Let A be an n× n symmetric matrix. A quadratic form on Rn is a function
of the form:

Q : Rn → R, Q(x) := xTAx

Exercise 20. Consider the following quadratic forms and write their corresponding matrices:

1. Q : Rn → R, Q(x) = ||x||2

2. Q : R2 → R, Q(x, y) = 3x2 − 4xy + 7y2

3. Q : R3 → R, Q(x, y, z) = 5x2 + 3y2 + 2z2 − xy + 8yz

Theorem 2.7. (Principal Axes Theorem.) Given a quadratic form Q : Rn → R, there is an
orthogonal change of variables y = Px that gets rid of the cross-product terms.

Definition 2.8. Given a quadratic form Q : Rn → R. Let {v1, ..., vn} be a basis of Rn such that
Q has no cross-product terms in terms of this basis. The spans span(vi), are called the principal
axes of the quadratic form.

Exercise 21. Prove Theorem 2.7. (Hint: What do the cross-product terms correspond to in the
matrix of the form? Note the matrix of the form is symmetric.)

Exercise 22. Get rid of the cross-product term in the quadratic form Q(x, y) = x2− 8xy− 5y2.

Definition 2.9. Let Q : Rn → R be a quadratic form. Then:
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1. Q is positive definite if Q(x) > 0 for all x 6= 0.

2. Q is positive semidefinite if Q(x) ≥ 0 for all x.

3. Q is negative definite if Q(x) < 0 for all x 6= 0.

4. Q is negative semidefinite if Q(x) ≤ 0 for all x.

5. Q is indefinite if Q(x) is none of the above.

Theorem 2.10. Let A be an m× n symmetric matrix and consider the quadratic form Q(x) =
xTAx. Then:

1. Q is positive definite if and only if the spectrum of A is positive (all eigenvalues are positive).

2. Q is negative definite if and only if the spectrum of A is negative (all eigenvalues are
negative).

3. Q is indefinite if and only if the spectrum of A has both positive and negative eigenvalues.

Exercise 23. Prove Theorem 2.10. (Hint: Apply Theorem 2.7.)

Exercise 24. We say a matrix A has the properties in Definition 2.9 if the quadratic form
Q(x) = xTAx has them.

1. Show that BTB is positive semidefinite, where B is an m× n matrix.

2. Show that if B is an invertible n× n matrix, then BTB is positive definite.

Exercise 25. Show that if A is an n× n positive definite symmetric matrix, then there exists a
positive definite matrix B such that A = BTB. (Hint: Use that A is orthogonally diagonalizable
with diagonal matrix D. Write D = CTC for some matrix C and let B = PCP T .)

Definition 2.11. Let A be an n×n matrix. A Cholesky decomposition of A is a factorization
A = RTR, where R is upper triangular with positive entries on the diagonal.

Exercise 26. Show that an n × n matrix A has a Cholesky decomposition if and only if it is
poistive definite. (Hint: QR factorization and exercise 25).

Exercise 27. Let A be an n×n invertible symmetric matrix. Show that if A is positive definite,
then so is A−1.

Exercise 28. Let D be the n × n diagonal matrix with the numbers λ1 ≥ λ2 ≥ .... ≥ λn on
its diagonal in order from greatest to lowest from left to right. Show that the quadratic form
Q : Rn → R defined by Q(x) = xTDx is such that Q(x) ≤ λ1 for all x in the unit sphere
Sn−1 = {x ∈ Rn | xTx = 1}.

Exercise 29. Let A be an n × n symmetric matrix. Let QA be the corresponding quadratic
form and let Sn−1 = {x ∈ Rn | xTx = 1} be the unit sphere in Rn.

1. Apply Theorem 2.7 to make an orthogonal change of variables so that the quadratic form
becomes the quadratic form QD given by a matrix as in exercise 28 with the entries the
eigenvalues of A and the columns of the change of variable y = Px are corresponding
orthonormal eigenvectors. Show that QA and QD obtain the same values on the unit
sphere Sn−1.
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2. Use the previous step and exercise 28 to show that QA obtains the maximum λ1 on Sn−1.

This shows that QA obtains the largest eigenvalue as its maximum when constrained to the unit
sphere, and that it does so at a unit eigenvector of A. An analogous argument shows that it
obtains the smallest eigenvalue as its minimum when constrained to the unit sphere.

A similar approach to the one of the previous exercise can be done to prove the following
theorem:

Theorem 2.12. Let A be an n×n symmetric matrix and let Q be the corresponding quadratic
form. Let λ1 ≥ λ2 ≥ .... ≥ λn be the eigenvalues of A and u1, ..., un be corresponding unit
eigenvectors. Then for any integer k with 1 ≤ k ≤ n, the form Q constrained to:

xTx = 1 xTu1 = 0 xTu2 = 0 ... xTuk−1 = 0

obtains the maximum λk at the eigenvector uk. (Note the constraint xTuj = 0 means the
hyperplane defined by uj of vectors orthogonal to uj.)

Exercise 30. Consider the matrix:

A :=

(
4 11 14
8 7 −2

)
Then:

1. When is the function x 7→ ||Ax||2 maximized when constrained to S2? (Hint: Consider the
quadratic form x 7→ xTATAx.)

2. What is the image of the unit sphere S2 under the linear map A?

3 The Singular Value Decomposition

Exercise 31. Let A be an m×n matrix. Show that the eigenvalues of ATA are all nonnegative.
(Hint: Let v1, ...., vn be orthonormal eigenvectors for the eigenvalues λ1, ..., λnof the matrix ATA
and consider the quadratic form corresponding to ATA.)

Definition 3.1. Let A be an m × n matrix. Let λ1 ≥ ... ≥ λn ≥ 0 be the eigenvalues of ATA.
The singular values of A are the numbers σi :=

√
λi, for i = 1, ..., n.

Exercise 32. Let A be an m×n matrix, and let v1, ..., vn be orthonormal vectors corresponding
to the eigenvalues λ1, ..., λn of the matrix ATA. What is the geometric relationship between the
vectors ||Avi|| and the singular values σi =

√
λi?

Exercise 33. Let A be an m × n matrix. Show that eigenvectors corresponding to different
singular values are orthogonal.

Exercise 34. Let A be an m× n matrix and let σ1 ≥ σ2 ≥ ... ≥ σn ≥ 0 be its singular values.
Suppose there are exactly r nonzero singular values σ1, ..., σr with corresponding orthonormal
eigenvectors v1, ..., vr. Show that {Av1, ..., Avr} is an orthogonal basis for im(A) and so the rank
of A is r. (Hint: Complete the basis {v1, ..., vr} to an orthonormal basis of Rn consisting of
eigenvectors and check directly.)
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Definition 3.2. Let A be an m×n matrix. A singular value decomposition is a factorization
of the form:

A = UΣV T

where U is an orthogonal m×m matrix, V is an orthogonal n× n matrix, D is an r× r matrix
where r is the rank of A, and Σ is of the form:

Σ =

(
D 0
0 0

)
with D a diagonal matrix with positive entries on its diagonal and with the lowest right block Σ
having size (m− r)× (n− r).

Theorem 3.3. Let A be an m × n matrix of rank r and let σ1 ≥ .... ≥ σr > 0 be the first r
singular values of A. Let Σ be a matrix of the form:

Σ =

(
D 0
0 0

)
where D is of size r × r and is diagonal with entries the singular values in decreasing order.
There exist an orthogonal m×m matrix U and an orthogonal n× n matrix V such that:

A = UΣV T

Exercise 35. Prove Theorem 3.3 by considering the following algorithm:

1. Let λ1 ≥ ... ≥ λr be the first nonzero eigenvalues of ATA and v1, ..., vr be corresponding
orthonormal eigenvectors. Complete this to an orthonormal eigenvector basis {v1, ...., vn} of
Rn. Thus, by Exercise 34, we know Av1, ..., Avr is an orthogonal basis of im(A). Normalize
to obtain an orthonormal basis {u1, ...., um} of Rm.

2. Define the matrices U and V to have as columns the basis vectors {u1, ..., um} and {v1, ...., vn}
respectively.

3. Let D be a diagonal matrix with the first r singular values. Let Σ be of the form given in
Definition 3.2.

This gives the SVD, show it works by doing the following:

1. Show that:

AV =
(
Av1 ... Avr 0 ... 0

)
=
(
σ1u1 ... σrur 0 ... 0

)
2. Show that UΣ = AV .

3. State that U and V are orthogonal and finish the proof.

Exercise 36. Use the above algorithm, to compute an SVD for the matrices:

(
4 11 14
8 7 −2

)  1 −1
−2 2
2 −2


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Exercise 37. Show that if A is an m × n matrix with SVD decomposition A = UΣV T , then
the columns of V are eigenvectors of ATA and the columns of U are eigenvectors of AAT . Show
that the diagonal entries of Σ are the singular values of A. (Hint: Use the SVD for the matrices
ATA and AAT .)

Exercise 38. Let A be an m×n matrix. Show that A is invertible if and only if A has n nonzero
singular values.

Definition 3.4. Let A be an n×n matrix of rank r. A reduced singular value decomosition
of A is a factorization A = UrDV

T
r , where D be an r×r diagonal matrix with positive entries, Ur

is an m× r matrix with orthogonal columns, and Vr is an n× r matrix with orthogonal columns.
The Moore-Penrose inverse or pseudoinverse of A is the matrix:

A+ = VrD
−1UT

r

Exercise 39. Obtain a reduced singular value decomposition from an SVD of A for each of the
matrices in exercise 36.

Exercise 40. Let A be an m× n matrix of rank r with Moore-Penrose inverse A+ = VrD
−1UT

r .
Show that:

1. The linear map AA+ is the projection of Rm onto im(A).

2. The linear map A+A is the projection of Rn onto im(AT )

3. AA+A = A and A+AA+ = A+

4. Let b ∈ Rm be a vector. Show that A+b gives the least-squares solution to Ax = b.
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